Emerging Interconnect Technologies for Nanoelectronics Abstract

Modern electronics has advanced at a tremendous pace over the course of the last half century primarily due to enhanced performance of MOS transistors due to dimension scaling, introduction of new materials and novel device structures. However, while this has enhanced the transistor performance, the opposite is true for the copper interconnects that link these transistors. Looking into the future the relentless scaling paradigm is threatened by the limits of copper/low-k interconnects, including excessive power dissipation, insufficient communication bandwidth, and signal latency for both off-chip and on- chip applications. Many of these obstacles stem from the physical limitations of copper/low-k electrical wires, namely the increase in copper resistivity, as wire dimensions and grain size become comparable to the bulk mean free path of electrons in copper and the dielectric capacitance. Thus, it is imperative to examine alternate interconnect schemes and explore possible advantages of novel potential candidates. This talk will address effects of scaling on the performance of Cu/low-k interconnects, alternate interconnect schemes: carbon nanotubes (CNT), graphene, optical interconnect, three-dimensional (3-D) integration and heterogeneous integration of these technologies on the silicon platform. Performance comparison of these technologies with Cu/low-k interconnects will be discussed.

Krishna Saraswat

Stanford University